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This report presents viscous, three-dimensional numerical solutions of two related
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for the solution of the thin layer Navier-Stokes equations to simulate the flowfield solu-

tions of 1) helicopter rotor blade encountering a passing concentrated line vortex, and 2)

a lifting hovering rotor, at both sub- and super-critical flowfield conditions. For the first

problem, the Euler equations were also solved independently to assess the importance

I of the viscous effects in the interacting flowfield. For this problem, a prescribed vortex

method is adopted to preserve the structure of the interacting vortex. Both parallel and

I oblique blade-vortex interactions have been calculated. The sample cases considered for

the calculations correspond to the wind tunnel model rotor test conditions. Comparison

of the numerical results with the test data show good agreement for both parallel and

oblique interactions at subsonic and transonic tip speeds. The viscous effects appear to

be not very important for the interactions considered here.

I The second problem considered is that of calculating lifting hovering rotor flowfields

without using any ad hoc wake models. The induced effects of the wake, including the

interaction of tip vortices with successive blades, are captured as a part of the overall

flowfield solution and hence no wake models are used. In order to preserve the structure

of the vortex wake, a completely upwind finite-difference numerical precedure is used

for this problem. Comparison of the numerical results show excellent agreement with

the experimental data and with the previously published Navier-Stokes calculations that

used a simple wake model. These results are the first ever Navier-Stokes calculations

presented with the wake capture capability for a lifting hovering rotor.
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-- 1. INTRODUCTION

The accurate simulation of the flowfield of a helicopter rotor is still one of the most

complex and challenging problems of applied aerodynamics. This is true in spite of the

availability of the present day supercomputers of Cray-2 class and improved numerical

algorithms. The major reason for this is that the flowfield of a rotor in forward flight is

highly three-dimensional, unsteady and viscous, with pockets of transonic flow near the

I blade tips on the advancing blades and regions of dynamic stall on the retreating blades.

In addition, the blades also shed complex vortical wakes; the concentrated tip vortices

shed by these blades generally pass close to the following blades. The close encounter

* of these (force free) concentrated vortices with the rotor blades induces unsteady load

fluctuations and acoustic noise. Some of the complexities associated with such a flowfield

are delineated in a schematic of a helicopter rotor in forward flight in Fig. 1.

The spiralling vortex sheet emanating from each of the blades of the rotor has a

profound influence on the performance of the helicopter. It not only alters the effective

pitch angle of the blades and thus the airloads, but also produces highly nonlinear

interactions of the vortex with the rotor flowfield. It is possible that such interactions

I might produce vortex induced boundary layer separation which results in a sudden loss

of lift and increase in drag. An accurate simulation of the rotor flowfield, therefore,

I must consider the induced effects of the vortex wake including the effects of blade-vortex

* interactions (BVI).

Numerical simulations of the vortex wakes are being attempted only recently after

-- bigger and faster computers have become available (Ref. 1). These investigations have

-- had some limited success to date in simulating the formation and initial roll up processes.

On the other hand, much of the progress in modeling the blade-vortex interaction has

been hampered by the lack of development of theoretical and/or numerical techniques
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to preserve the structure of the concentrated vortices, when convecting in the flowfield, I
without significant diffusion. The study of blade-vortex interaction has been the subject

of numerous recent research papers (Refs. 2-10). These studies have considered different

methods of preserving the concentrated vortex in the flowfield. Among these, the vortex-

fitting technique (also called the split potential formulation in potential flow methods)

has been demonstrated to be a very effective method in preserving the vortex even when

the computational grid is sparse. This method has also proven very economical (Ref. 5)

compared to a more exact formulation used in Ref. 3. I

Accurate simulations of the flowfield of a helicopter rotor in hover or in forward flight

require an accurate description of the vortex structure and its position in the wake.

The Navier-Stokes methods are the only methods that can provide this information. I
To compute such an information on a routine basis for a design analysis is perhaps

prohibitively expensive even with the present day supercomputers. This is the reason

that simple methods, based on linear aerodynamics, have been developed for use in

industry (see for example Refs. 11-12). I
To date, many advances have been made to calculate these complex flowfields by the

use of simpler equations of fluid motion, such as full potential, coupled with empirical

wake models to bring-in the influence of the vortex wake (Ref. 8). Such methods have

been specialized for each blade shape and planform and therefore are not very general.

Nevertheless, these methods have been useful to the industry and are being used in

the design analysis on a routine basis. There is no doubt that the weak link in the I
above methodology is the wake modeling as these methods cannot handle arbitrary

configurations and high supercritical flow conditions. Alternative to the prescribed wake

models used in the above methods, the present study will present a numerical method to

capture the wake and its influence as a part of the overall flowfield solution. This means

that the present method does not use any ad hoc wake models.

It should be pointed out that the concept of wake capture is not new and has, in

2
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I fact, been utilized by several researchers to investigate the hovering rotor problem. In

particular, the works of Refs. 13-17 are to be mentioned for the Euler and flow potential

methods. These studies have shown promise with limited success. The main ingredient

that is responsible for the formation of tip vortices, namely the viscosity, is absent in

these methods. While the role of viscosity is clear, its importance in these flows is

uncertain at this stage. This will be investigated in the present study.

The purpose of this study, therefore, is to devise numerical methods for the solu-

tion of the Navier-Stokes equations to accurately calculate the flowfield of a helicopter

rotor, including the effects of blade-vortex interactions. In particular, this report will

attempt to demonstrate the ability of the current Navier-Stokes methods to 1) calcu-

late the unsteady, three-dimensional, blade-vortex interaction (BVI) flowfield, for both

parallel and oblique blade-vortex interactions for a model helicopter rotor problem (see

I for example Refs. 18-19), and 2) calculate the flowfield of a lifting hovering rotor by

capturing the wake and its influence as a part of overall solution method corresponding

to the experimental conditions of a model rotor test (Ref. 20).

II
I
I
I
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I
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2. GOVERNING EQUATIONS AND NUMERICAL SCHEME I

The governing partial differential equations are the unsteady, thin layer Navier-

Stokes equations. In this study, the thin layer Navier-Stokes code recently written specif-

ically for helicopter rotor applications (Ref. 21) will provide the starting point for further

modifications to calculate the blade-vortex interaction fiowfield first and later the lifting I
hovering rotor flowfield. In order to assess the importance of viscous effects in the blade-

vortex interacting flowfields, both the Euler and the thin layer Navier-Stokes equations

have been solved. (The Euler calculations are performed by turning off the viscous terms

in the Navier-Stokes equations set and appropriately modifying the surface boundary

condition.) The mathematical formulation presented in the following paragraphs is for I

the solution of thin layer Navier-stokes equations with the added feature of introducing

a prescribed vortex.

For generality, the equations are transformed from the inertial Cartesian refer- U
ence frame (z, Y, z, t) to the arbitrary curvilinear coordinate frame ( , 17, C, r) that

moves with the blade, while retaining strong conservation law-form to capture shock

waves. The transformed equations, following Ref. 22, can be written as I
I

8,.(Q- Q.) + O(F - F) +0,,G - G)±0(H -Ho) =eRe- t9S() (II

where 3
4 I
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pu puU + G2 p
j - , pV P = p- 1  PVU + Gp

pw pWU + GZP
e U(e + p) - 6,p

pV pW (2)

puV + 77-p puW + G=p
J-' pvV +p ,= J-' pvW + ,P

pwV + 7lp pwW + CP

V(e +p) - 7tp M~e+ P) -CtP

and e = 0 for Euler equations, and e = 1 for thin-layer Navier-Stokes equations. Here

Q is the unknown flowfield vector and Q0 is the solution of the Euler equations for a

prescribed line vortex aligned with the uniform free stream of Mach number, M,, in the

y-direction (see Fig. 2). The terms F, G, f and F, Go, Ho represent the appropriate

flux vectors for the two flows, respectively. The hat, represented by (), in Eq. (1)

denotes quantities scaled by the Jacobian J, e.g., Q = J 1 Q etc. The contravariant

U velocity components U, V and W are defined as

I U = ft + 2 u + tyv + Gw

V = 7t + r,,u + rtvv + 77,w

W = (t + U + (VV + (.w

In the present formulation, lies in the chordwise or wraparound direction, 'q is in the

spanwise direction, and C is normal to the blade surface.I -

The viscous flux vector S is used in the limit of the thin-layer approximation

and is given by

0
Klu + K 2C2

Kjv + K 2(y (3)I Kjw< +K 2CG
K,(Pr-'(-t - 1)-'(a2 )( + ((q 2 )/2)()

+ K2K 3

I5



where

KI =,u((! + (2 + (2)

K 2 = ,p(,uC + CyvC + C,,C)/3
(4)-

K 3 = C.u + CVv + Czw,

q 2  u 2 + v 2 + W 2

In this equation, a is the speed of sound, r. is the coefficient of thermal conductivity and p

is the viscosity coefficient computed as the sum of laminar and turbulent contributions.

Sutherland's equation is used for laminar viscosity and the two-layer algebraic eddy

viscosity model of Baldwin and Lomax (Ref. 23) is used to calculate the turbulent eddy

viscosity, after minor modifications to account for the moving blade surface. Also, J is

the transformation Jacobian, whose inverse is written as

j-1 = Xlyz1Z + ZXy z,7 + ,3yCZt - yOz,7 - X7yOz - Cy7z I

The velocity components u, v, w and the pressure, p, are related to the total

energy per unit volume, e, through the equation of state for a perfect gas by

_P2 v2 2
p = (-y -1)(e -- (u + + w)) (5) I

The primitive variables of Eq. (1), viz., the density p, the mass fluxes pu, pv, pw

and the energy per unit volume e, are normalized by the free stream reference quantities

and the pressure p by -Pyc,. The reference length and velocity scales are the chord of the g

blade, C, and free stream speed of sound, a, respectively. The details of the metrics of

transformation ( t, ,,, t / ,z7y,r71) and ((t,C.,y, ,) can be found in Ref. 22.

In the above equations u, v, and w are the Cartesian components of velocity in

the inertial coordinate system (X,y,z,t). In the present formulation Eq. (1) is solved

6
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I in the inertial frame of reference with the boundary conditions applied on the rotating

blade. The inertial coordinates X = (x, y, z, t) are related to the blade-fixed coordinates

Xb = ) through the relation given by

I X(z,y, z) - R(t)Xb(i, g, i)
(6)

where R(t) is the rotational matrix (Ref. 24) given byI
cos 01 - sint i]0

I R(t) = sinQt cosa 11 (7)
o0 1

I Here fl is the angular velocity of the rotor and flt represents the azimuth sweep of the

I rotor blade.

The equations set, Eq. (1), is solved using a two-factor, implicit, finite-difference

numerical scheme (Ref. 25), that uses spatial central-differencing in the 7 and c directions

and upwind-differencing in the direction and is given by

3 I + h6'(Ai+)' + h6CG"' - hRe 1'ScJ-'Mn J - DudC

[I + h5f (k)' + h6.,B'~ - Di111] (A 0

I- At{6[(-+). - (F?)n] + 6f[(F-)" - (F;)"] (8)

I +6i(G -G±) +  c(H".-H) - Re-',(S,).

I - (D.I, + Dk)(Q= - Q0)

where h = At for first-order time accuracy. Here 6 is typically a three-point, second-

I order-accurate, central difference operator, S is a midpoint operator used with the viscous

terms, and the operators 6 and 6f are backward and forward three-point difference

operators. The time index is denoted by n such that t = (nAt), and AQn = Q + I - Q n.

The flux vector F has been split into F+ and F-, according to its eigenvalues (Ref. 26)

I
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and the matrices A±, B, C, and M result from the local linearization of fluxes about

the previous time level (see Ref. 22). The finite-difference scheme described in Eq. (5)

uses flux-splitting in direction and central differencing in the r7 and C directions. As

a consequence, numerical disspation terms denoted by Di and D, are employed in the

r7 and C directions, and are given as combinations of second- and fourth-differences as

follows (Ref. 27). I
I

D.,7 = (At)J-'(I11 ± I+71 + 1i7l) [E29 1(1 + E61 + 4' S 17j (9)
D i , = (A t)J- (1771 + 1771y, + 171) 1 2 S (1 + S2)pl 4

In the vicinity of shock waves, the fourth-difference terms can cause oscillations, so it is

desirable to drop these terms and rely only on the second-difference terms. In the above

expression, p is the nondimensionalized fluid pressure and e2 is 0(1) while E4 is 0(0.1).

In transonic flow the term (1771.+ 1771y + 1l1.) is an estimate to the spectral radius of

the matrix B for variables that have been nondimensionalized with respect to the sound

speed. since (1l1 + lifly + JIr/{) does not contain any fluid variable, it can be left as the

coefficient to the dissipation operator without affecting the weak conservation form of

the difference equations. The implicit second difference numerical dissipation operators

were chosen to keep the left hand side factors block tridiagonal, and as Di works on SQ,

accuracy is not impaired.

The factored operators in Eq. (8) are solved by sweeping in the direction and 3
inverting tridiagonal matrices with 5 x 5 blocks for the other two directions. Currently, a

significant part of the computational time is taken to form the plus and minus Jacobian I
matrices for the flux vector F with this numerical scheme. However, this effort has been

reduced by computing A and A at every other point (in both 17 and ( directions) U
and averaging to obtain the matrices at the intermediate points. The numerical code is
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I vectorized for the Cray-2 supercomputer.

In writing Eq. (5) it is assumed that F :, b , andC0  z- C where

the Jacobian matrices Z , B and C correspond to the prescribed-vortex flowfield. In

the absence of vortex interaction, the prescribed-disturbance flowfield reduces to a free

3 stream.

In using this numerical algorithm for the physical problem of blade-vortex in-

teraction presented here, a note of caution is in order. As noted before, the numerical

scheme is second-order accurate in space. Although it is desirable to have higher-order

accuracy in space, it turns out that the present algorithm is numerically more stable if

this accuracy is decreased slightly from second-order. Also, in evaluating the right hand

side of Eq. (5), it is desirable to calculate the derivatives of individual fluxes first and

then taking a difference. This is particularly true for the fluxes in the C direction.I
The above numerical algorithm is used for the problem of blade-vortex inter-

action. For calculating the lifting hovering flowfields, a slightly different numerical al-

gorithm is used. The fundamental difference is the use of upwinding in all three direc-

I tions. This feature coupled with a simplified left-hand-side has produced an efficient

and accurate numerical scheme that is about five times computationally efficient. These

additional features are utilized from the works of Ref. 28. The use of Roe's upwinding

eliminates the addition of explicit numerical dissipation to control the stability of the

code and thus is known to produce less dissipative solutions. This feature, coupled with

I a fine grid description in the tip region would enable better description of the wake sim-

ulation. It is hoped that the preservation of the wake structure in the flowfield, at least

in the initial formation and roll-up stages, would be better in the absence of additional

3 numerical viscosity.

3 Body-conforming finite-difference grids have been used in the present study.
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The helicopter rotor blades considered are of rectangular plan form with no twist or 3
taper. The grid topologies consist of warped spherical 0-0 for the first problem and

C-H cylindrical grid for the second problem. For the first problem, the flowfield grid

is generated using the three-dimensional hyperbolic grid solver of Steger and Chaussee

(Ref. 29) with proper clustering in the leading and trailing edge regic.'- and in the

tip region. The grid is nearly orthogoILdi at the surface and the spacing in the normal 3
direction at the surface is chosen to be 0.0002C for the viscous grid and 0.02C for the

Euler grid. The viscous computations are done on a grid consisting of 21 points along the U
span, 101 in the periodic direction around the blade and 31 in the normal direction. The

Euler grid is more coarser with only 21x101x15 grid points. The outer grid boundary

was chosen to be at 8 chords in all directions for both viscous and inviscid grids.

The C-H cylindrical grid used for the lifting hover calculation appears to be the I
desirable topology because of the cylindrical nature of the flow. The grid is clustered

as before to enable better resolution of the flow. Th grid used has approximately one

million points with 217 in the chordwi:e direction, 71 in the spanwise direction and 61 3
in the normal direction. The spacing near the wall is O.C0005. The smallest spacing at

the bevel tip in the spanwise direction is of the order of the semi-thickness of the blade. 3
To test the code a smaller grid was constructed by selecting every other point in all the

three directions. I
The boundary conditions, both surface and farfield, are applied explicitly. At the

rotating blade surface because of the noslip condition for viscous flows, the contravariant 3
velocities U, V and W are set to zero. However, the surface velocity in the inertial frame

is nonzero since it is equal to the surface grid velocity, determined by the time metrics I
t, 77t and ( t as the blade (and the grid attached to it) moves in azimuth. The Euler

calculations use an extrapolation of contravariant velocities to the surface. The density

at the wall is determined by zeroth-order extrapolation. The pressure along the body 3
10



I

I surface is calculated from the normal momentum relation (see, for example Ref. 22).

Having calculated the density and pressure, the total energy is determined from the

equation of state.I
At the farfield boundary the flow quantities are either fixed or extrapolated from

the interior depending on whether the flow is subsonic or supersonic and if it is of inflow-

or outflow-type at the boundary. The characteristic velocities of the Euler equations

I determine the number of flow properties to be specified to control the reflections of waves

from the boundaries. For the subsonic-inflow boundary, four quantities must be specified

and one quantity is determined. The four specified here are a Riemann invariant, the

entropy, and two tangential velocities; the quantity that is calculated is also a Riemann

invariant. For the supersonic-inflow, all flow quantities are specified. At the subsonic-

I outflow boundaries, only one quantity is specified. For the supersonic-outflow condition

all flow quantities are extrapolated from the interior. The plane containing the blade

root is chosen very close to the rotation axis of the blade (at R = 1.OC) and is also

treated as a farfield boundary.

For the hovering rotor problem, the farfield boundary is updated explicitly by

means of characteristic-type boundary conditions procedure (Ref. 30), although the

I effect of using this procedure was found to be unimportant. This is because the Roe's

upwinding procedure used in the numerical scheme would otherwise treat the boundaries

in a 1-D characteristic sense. At the inboard plane, near the center of rotation, a linear

extrapolation is used for density and the three-velocities, and the energy is calculated

from the equation of state by prescribing the pressure. A periodicity condition is used

to swap the information at the front and back boundaries of the cylidrical grid topology

( for a two bladed rotor) for wake capture feature. At the bottom boundary of the

cylindrical grid, a boundary condition similar to that prescribed at the farfield boundary

* in the first problem is imposed explicitly.
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The interacting line vortex generated upstream of the rotor by a rectangular

wing is fixed in the inertial space along a line of constant x. It is assumed to have an

analytical representation for the cylindrical velocity distribution given by

cr r2) (10)
v--2rr G 2 +- ao2 )I

The constant Ck in the above expression has been determined to be equal to 0.8 by

matching the peak tangential velocity with the experimentally measured value at the

measured radial distance reported in Ref. 6. The constant a. is approximately equal

to the radius of the viscous core of the vortex (equal to 0.167C in the present case).

The induced velocity due to this line vortex is calculated using the Biot-Savart Law and

the pressure field is calculated by solving the radial momentum equation; the vortex is

initialized well upstream of the interaction region as described in Ref. 5.

12
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I 3. RESULTS AND DISCUSSION

All the calculations performed in the first part of this study are done in a time-

accurate fashion. The test cases calculated correspond to the two sets of experiments of

Caradonna et al. (Refs. 18-19) for parallel and oblique blade-vortex interactions. Since

I one of the purposes of the experiments was to collect data to validate numerical methods,

the experimental apparatus was kept simple to ease the representation by numerical

methods. The rotor geometry consisted of a two-bladed rigid rotor of approximately

14-chord diameter. The blades have a rectangular planform and consist of an NACA

0012 airfoil with no twist or taper. The rotor blades are essentially nonlifting in the

I absence of the vortex interaction. The interacting vortex was generated upstream of this

rotor by a lifting rectangular wing with an NACA 0015 airfoil. Parallel and oblique BVI

are generated by positioning the line vortex along the y-axis (z. = 0.0) and ahead of the

y-axis (zo < 0.0) so that the rotor blade encounters the vortex on the advancing side in

the first- and second-quadrants of the azimuthal travel as shown in Fig. 2.I
As mentioned before, the Navier-Stokes hover code described in Ref. 21 provides

the starting point for the present investigation. In this study, this code has been validated

against the experimental data of Caradonna and Tung (Ref. 20) for the nonlifting and

I lifting hover conditions for both the subcritical and the supercritical tip speeds. Although

the main focus of the present investigation is to calculate both parallel and oblique blade-

vortex interactions, it is necessary to first calculate the base-line rotor-alone flowfield

solutions (in the absence of vortex interaction) at the same free stream conditions. Two

sets of results for parallel blade-vortex interactions, corresponding to Mtip = 0.6 and 0.8

I and ti = 0.2 and one set of results for oblique blade-vortex interaction corresponding to

Mtip = 0.763 and t = 0.197, will be presented in the following sections and compared

with experimental data. At the Reynolds numbers corresponding to the blade tip speeds

in these experiments, the boundary layer on the entire rotor blade could be assumed to

13



be turbulent and, as mentioned before, an algebraic eddy viscosity model of Baldwin I
and Lomax (Ref. 23) is used for calculating the turbulent viscosity.

3.1 Rotor-Alone Case

The calculation of the rotor-alone flowfield solutions serves two purposes. First,

it enables an understanding of the importance of unsteady time-lag effects in shock wave

growth and decay as well as the three-dimensionality of the flowfield of the advancing

rotor, particularly when the flow is supercritical. Second, it provides the baseline solution

to eventually calculate the vortex interaction flowfield. I

Figure 3 shows the instantaneous surface pressure distributions for various az- i
imuthal positions of the rotor for the case of Mtip = 0.6 and I = 0.2. Examination of

the results suggests that at this reference station of rB = 0.893 and for the subcritical

flow condition, the flow behaves as if it is quasi-steady and quasi-two-dimensional. In

spite of the gradual increase of the blade-element relative speed in the first quadrant and

gradual decrease of the same in the second quadrant, the flowfield appears to remain I
nearly the same at all azimuth locations (as seen in Fig. 3b) indicating that the un-

steady time-lag effects are virtually absent for this flow condition and the flow behaves

as if it is quasi-steady. In fact, also shown in Fig. 3b is the quasi-steady solution for one

azimuth location of 0 = 90.0 which is in perfect agreement with the unsteady solutions

at different azimuthal positions. Also, the comparison of three-dimensional results of

Fig. 3b with the two-dimensional results (Ref. 6) of Fig. 3a shows that these results are

nearly identical suggesting that the flow also behaves as if it is quasi-two-dimensional. I

At the supercritical tip flow conditions, corresponding to Mti, = 0.8 and 1A = i
0.2, the basic rotor flowfield is dominated by the presence of a strong shock wave on the

advancing blade over large parts of the first- and second-quadrants. For this advancing

rotor, the Euler and Navier-Stokes results of instantaneous surface pressures are shown

14



in Fig. 4 at the radial station rB = 0.893 for different azimuthal positions of the blade.

The Euler results show good agreement with the experiments and the Navier-Stokes

results have only a qualitative agreement because of the coarse grid. It appears that

the shock wave position is under predicted for the Navier-Stokes method and slightly

over predicted for the Euler method. For this coarse grid solution, the Navier-Stokes

method predicts the decay of the shock much faster in the second-quadrant. On the

other hand, the Euler method predicts that the shock wave persists at the ?k = 1800

azimuth. Previous two-dimensional Navier-Stokes calculations of the same flow (Ref.

6) had shown strong three-dimensionality and unsteady time-lags in shock wave growth

and decay. The two-dimensional assumption for this flow essentially over-predicted the

shock wave position and strength, unlike the subcritical flow condition. In contrast, the

three-dimensional Euler results seem to follow the experimental observation correctly.

Thus at this flow condition, the flowfield is highly three-dimensional exhibiting

strong unsteady time-lag behaviour in the shock wave formation and eventual demise.

The unsteady time-lag feature of the flowfield is demonstrated in the surface pressure

distributions of Fig. 4 shown for 4' = 60 ° and 4p = 1200 azimuthal positions, which

shows that the two results are very different from each other.

In principle, the shock wave should attain its maximum strength when the rela-

tive flow speed reaches a maximum value for 4 = 900 blade azimuthal position. However,

the shock wave keeps growing in strength even after the blade has passed the ' = 90* az-

imuthal position and a weak shock wave seems to persist even at the' = 1800 azimuth.

The strengthening of the shock wave in the first-quadrant and beyond, and the slow

demise of it in the second-quadrant, suggests the existence of a strong unsteady time-lag

effect at this flow condition. Such a behavior was totally absent at the subcritical flow

condition. The presence of the shock wave seems to introduce not only the time-lag

in the adjustment of the flow as the blade sweeps in azimuth, but also makes the flow
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highly three-dimensional. I

In contrast to the flow on the advancing side of the rotor blade, the flow-field of

the retreating side appears really benign for this nonlifting rotor. The 'ingering effects of

the shock wave, persisting at 4' = 180,0 soon die out as the blade sweeps into the third- I
quadrant. Shown in Fig. 5 are the surface pressure distributions for several azimuthal I
locations of the blade in third- and fourth-quadrants on the retreating cycle. Since the

flowfield is basically subcritical on the retreating side, the plots of Fig. 5 appear to have

the same behavior as those of Fig. 3.

Figure 6 shows the surface pressure distributions on the advancing rotor at rB

= 0.946 for the flow conditions of Mtip = 0.763 and y = 0.197. Since this flow condition I
is similar to that of the case of Fig. 4, it has the same qualitative behaviour of the

flow on the advancing side. As seen in these plots, the Euler calculations are in good

agreement with the experimental data.3 As before, the Navier-Stokes results have only

a qualitative agreement for the reasons mentioned before. It is important to mention

that the rotor-alone case involves a nonlifting symmetrical blade, for which the pressure I
distributions should be identical on the upper and lower surfaces. However, the data in

Fig. 6, from Ref. 19, seem to have more scatter than the corresponding experimental I
results from Ref. 18.

3.2 Quasi-steady vs Unsteady Results

Although the flowfield of a lifting helicopter rotor is, in general, unsteady and

three-dimensional, a close inspection of the subsonic surface pressure results presented in

Fig. 3b suggests that the unsteady and quasi-steady results are nearly the same for this

nonlifting flow condition. In fact, a quasi-steady flow calculated by freezing the rotor

blade at certain azimuthal locations (say, 4' = 0.00 ) produces nearly the same flowfield

as an unsteady flowfield irrespective of the flow conditions. In the present approach,
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I the unsteady calculations are started from a baseline quasi-steady solution. At the

subcritical flow conditions, similar to that presented in Fig. 3, an unsteady calculation

can be started from any azimuthal location of the blade because of the quasi-steady and

the unsteady solutions being nearly identical at all azimuthal locations. However, this is

not true for supercritical flow conditions where shock waves are present in the flowfield.

For example, Fig. 7 shows the quasi-steady and unsteady surface pressure distributions

for the case of Mtip = 0.8 and p = 0.2 at azimuthal locations of 0' = 600 and 120 ° .

For this flow condition, these results indicate that the quasi-steady assumption over

predicts the shock strength at 40 = 600 and under predicts at 0' = 1200. Nevertheless,

at 4, = 0.0 ° position, the quasi-steady and unsteady results are nearly identical even for

this flow condition. So, for flow conditions that are severe, it is still reasonable to start

the unsteady marching from the quasi-steady solution calculated at 4 = 0.0 ° azimuthal

I location.

1 3.3 Parallel Blade-Vortex Interaction

I During the unsteady three-dimensional close encounter of a curved tip vortex

with a rotating blade, the helicopter rotor undergoes a variety of blade-vortex inter-

actions depending on the interaction angle between the leading edge of the rotating

blade and the curved line vortex. These interactions are generally unsteady and three-

dimensional. One limiting case of such an encounter, for zero interaction angle, is termed

parallel interaction (see, for example, Ref. 5). In the experimental configuration consid-

ered here, this interaction occurs around 0 = 180 ° azimuthal position. For an observer

riding with the blade (at a given reference station along the span), it appears as though

the observer is passing a fixed vortex in the flow. For this reason, this interaction is

sometimes approximated as two-dimensional and unsteady.

To calculate accurately the blade-vortex interaction flowfield, it is necessary to

preserve the vortex structure without numerical diffusion. As mentioned before, one
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method that has been demonstrated to work effectively and economically in achieving I
this is the prescribed-disturbance scheme (Ref. 5). The effectiveness of this scheme is I
illustrated in Fig. 8 (reproduced from Ref. 7) showing the variation of lift coefficient as

a function of the vortex location during an airfoil-vortex interaction. Also shown in this

figure is the Euler lift distribution calculated using a conventional (vortex capturing)

technique (Ref. 31). Although the two Euler solutions are computed on the same grid,

the numerical dissipation associated with the finite grid-spacing progressively weakens

the gradients and reduces the effective vortex strength in the conventional method. Also, I
this numerical error is grid-dependent (the finer the grid the lesser the error); however, it

is completely absent in the prescribed-vortex solutions, which are essentially independent

of the grid. Hence, the prescribed-disturbance method has been used here for preserving

the vortex structure. I
3.3.1 Subcritical Interaction I

The results of a subcritical parallel BVI are discussed here. This case corre-

sponds to the flow conditions of Mtip = 0.6, u = 0.2, and C'k = 0.133 at a blade I
reference station (marked AA in Fig.2) rB = 0.893. The interacting vortex is located at

Xo = 0.0 and z. = -0.4 along the y-axis. To calculate the BVI flowfield, the interacting

vortex is initialized with the baseline rotor solution at the azimuthal position of ¢' = 1

120.0 The unsteady flow field is monitored as the blade continues to advance in azimuth,

and the peak interaction effects are shown in Fig. 9 in the form of instantaneous surface

pressure distributions measured around k = 1800 azimuthal position.

The present Euler results are in very good agreement with both the experimental

data (Ref. 18) and a previous two-dimensional Navier-Stokes calculation (Ref. 6). As I
seen from Fig. 9a for i/ = 178.15,0 the lift on the blade, which is initially zero in the

absence of vortex interaction, is negative (because of the sense of rotation of the vortex)

and gradually becomes positive as the blade passes the line vortex. This crossover of lift,
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I from negative to positive, seems to occur when the vortex is approximately aligned with

the quarter-chord line of the blade (corresponding to 4 = 0.0). As mentioned before,

the two-dimensional approximation of this three-dimensional, unsteady interaction is, in

fact, a very good assumption for this subcritical flow condition. The close agreement of

the viscous and inviscid results suggests that the viscous effects are unimportant for this

* relatively weak interaction.

3.3.2 Supercritical Interaction

I This case corresponds to the flow condition of M = 0.8, jt = 0.2, and Ckf

- 0.177 at a blade reference station of rB = 0.893. The interacting vortex location

I is same as in subcritical case. This flow condition, in constrast to the subcritical flow

condition, exhibits strong unsteady time-lag effects in shock wave growth and decay for

the advancing rotor. This feature seems to accentuate the three-dimensional nature of

the flow and a two-dimensional approximation of this flow over predicts the shock wave

strength and location as demonstrated in Ref. 6.I
As before, to calculate the BVI flowfield, the interacting vortex is initialized

at about 0 =1200 azimuthal position and the time evolution of the flow is monitored

as the blade advances in azimuth. Figures 10-11 show the interaction flowfield results

I in terms of instantaneous surface pressures for several azimuthal positions of the blade

for the Euler and the Navier-Stokes calculations. Also shown in these figures are the

experimental data (Ref. 18). Comparison of the results shows that while the Euler results

(Fig. 10) have good agreement with the experimental data for all azimuthal locations of

the blade, the Navier-Stokes results (Fig. 11) show only a qualitative agreement with the

experimental data. This feature is strongly dependent on the accuracy of the base-line

solution at the azimuthal location where the vortex is initialized. The vortex is intialized

at the 4, = 1200 position of the blade for this case. Comparison of surface pressures of

Fig. 4d at this location for the Navier-Stokes and Euler calculations shows that the
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Euler results have better agreement with experiments than the Navier-Stokes results. I
Although the Euler grid is very coarse, it seems to capture the essential details of the

flow sharply including the shock waves. Since the Navier-Stokes grid is too coarse, the

shocks appear smeared. Nevertheless, it captures the essential qualitative features of the

flow. I
The effect of vortex interaction is to induce time dependent aerodynamic forces

on the rotor. For example, as seen from the surface pressure plots of Figs. 10-11, the lift

on the blade, which is intially zero, becomes negative (because of the sense of rotation

of vortex) due to induced downwash and gradually increases to a positive value as the I
blade passes the fixed vortex. The peak effects of the interaction appear to occur when

the blade leading edge is approximately above the line vortex.

3.4 Oblique Blade-Vortex F-teraction UI
This case cc-responds to a free stream condition of Mtip = 0.763 and U =

0.197. The interacting vortex located at zo = -2.13 and z. = -0.25 has a strength of

Ckr = 0.179 for the reference blade section at rB = 0.946. In contrast to the parallel

interaction, the oblique interaction occurs over a larger azimuthal sweep of the rotor I
blade starting in first-quadrant and completing in second-quadrant. The peak interaction

occurs at around 4 = 200 in the first-quadrant and around 4, = 1600 in the second-

quadrant. Therefore, the vortex is initialized at 4, = 0.00 and the evolution of the

unsteady interacting flow is monitored for the advancing rotor. I
Figures 12-13 show the surface pressure distributions for several azimuthal po-

sitions of the blade from the Euler and the Navier-Stokes calculations of the interaction I
flowfield. As observed before, the transonic Euler calculations agree better with the

experimental data3 than the Navier-Stokes calculations for the reasons cited earlier. On

the other hand, the interaction in the first-quadrant occurs at subcritical flow condition
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and therefore the agreement of both the Euler and Navier-Stokes calculations with the

experimental data is good at 0 = 500. For the interaction in the second-qudrant, where

the flow is supercritical, the Euler results have better agreement with the experiments

than the Navier-Stokes results. Compared to the preceding transonic parallel interac-

tion results, the Navier-Stokes results for this interaction appear to agree better with

the experimental data. This is in direct consequence of the better agreement of the

rotor-alone Euler and the Navier-Stokes surface pressures at all azimuthal positions, as

seen in Fig. 12 for this flow condition. The maximum relative blade tip speed in this

case (for ?k = 900 position) is 0.91 compared to a value of 0.96 corresponding to the

transonic parallel interaction case and is thus a weaker interaction.

From the surface pressures of Fig. 13, it can be seen that the lift on rotor blade,

which is initially zero, becomes negative due to the vortex influence (because of the sense

of rotation), increases to a maximum (negative) value in second-quadrant, and changes

over to a positive value at about 4f = 1650 azimuthal position of the blade. The peak

interaction appears to occur around the -0 = 1600 azimuthal position.

3.5 Lifting Hovering Rotor FlowfieldI
This section presents the steady solutions of a lifting hovering rotor. The flow-

field of a hovering rotor can be either steady or unsteady depending on the reference

frame of the observer. It is steady if the observer is fixed to the blade and riding with

it. On the other hand, if the observer is stationed in the inertial reference frame, the

flowfield appears unsteady. To take advantage of the steady state of the flowfield, a vari-

able time-step option (see Ref. 31) is used to accelerate the convergence criteria of the

numerical system. Rest of the features of the physical problem including the unsteady

metrics are identical to the first problem presented above. The major advantage in this

steady state problem is that the blade need not be physically advanced at each time

step
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The test cases selected for calculations correspond to the experimental test con-

ditions of a two-bladed rigid rotor (Ref. 20). The rectangular blades of this rotor are

made up of NACA 0012 airfoil sections and have an aspect ratio of 6. The blades are

untwisted and untapered as before. Three typical sets of conditions are considered rep-

resenting subcritical and supercritical tip speeds with two different collective pitches.

The Reynolds number variation in these sets range from 1.92 to 3.83 million based on

the tip speeds. In the calculation procedure, the flowfield is initially quiescent and the

evolution of the flowfield is monitored as the blade is set in motion. I

Figures 14-18 show steady surface pressure distributions for the subcritical case I
of Mtip = 0.44 with a collective pitch of 80 and a flow Reynolds number based on the

tip speed of 1.92x10 6 at various radial stations along the blade. The solid line which

is the present calculations shows excellent agreement with the experimental data (Ref.

20) at all radial stations. Also shown in these is a previous Navier-Stokes calculation

of Srinivasan and McCroskey (Ref. 21) that used a simple wake model to bring-in the I
influence on the wake. Although there is good qualitative agreement between these two,

the present calculation, which does not use any ad hoc assumptions on the wake and its

influence, are in very good agreement with the experimental data. The two calculations

are done on a comparable size grids but have different grid topologies. I
The present wake capture calculations are atleast 5 times cheaper in computer

time requirements compared to the one presented in Ref. 21. Calculations have also been

done on a smaller grid, which was 1/8 the size of the present grid of about a million point,

and the results show very good agreement with experiments even on this. The deficiency I
is in the inboard part of the blade where the grid is not very fine. The calculations on

the smaller grid takes typically less than one hour on Cray2 supercomputer. This time

is comparable to even many potential flow codes (Refs. 32-34) that are in use today.

Figures 19-22 show steady surface pressures for the supercritical case of Mtip
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I = 0.877 with a collective pitch of 8' and corresponding Reynolds number of 3.83x10 6 .

The surface pressures are shown for four radial stations and are compared with the

experimental data of Caradonna and Tung (Ref. 20) and the Navier-Stokes calculations

of Srinivasan and McCroskey (Ref. 21). As seen in these figures, the present wake capture

Navier-Stokes results are in much better agreement with the experimental data than the

I Navier-Stokes results of Ref. 21. These results further demonstrate the superiority of

this present methodology in predicting accurate results with out any ad hoc inputs toI
describe the wake which is an important influence in the lifting hovering rotor flowfields.

I Figures 23-27 show surface pressures for the conditions of Mtip = 0.877, collective

pitch of 120, and flow Reynolds of 3.55x106 . These calculations are done on the coarser

grid. The results show only reasonable agreement with the experimental data. This is

a severe case in terms of vorticity in the wake. These results are in similar agreement

with experimental data as some of the potential flow methods that use wake models

I (Ref. 33-34). It should be emphasised that the present calculations, with the smaller

grid, takes less than one hour of computer time on a supercomputer and no additional

inputs are made to describe the wake.

II
I
I
I
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4. CONCLUDING REMARKS

The research presented here address two related problems of a helicopter ro-

tor and are therefore three-dimensional, unsteady and viscous dominated. For the first

problem considered here, a numerical procedure is presented to calculate the unsteady,

viscous and inviscid, three-dimensional flowfields of a helicopter rotor in forward flight

and parallel and oblique blade-vortex interactions in subcritical and supercritical flow

conditions. Important flow features such as unsteady time-lag effects in shock wave

growth and evential decay, as well as the importance of three-dimensional effects are

discussed. While it is possible to approximate the parallel blade-vortex interaction as

two-dimensional and unsteady when the entire flow is subcritical, this same problem

under supercritical flow condition and also the oblique blade-vortex interaction are nat-

urally three-dimensional, and unsteady and has to be treated that way without any

simplifications.

The numerical results are compared with two-sets of test data generated by

Caradonna et al. (Refs. 18-19) on a model two-bladed rigid rotor in a wind tunnel. While I
the Euler results have good agreement with experiments, the Navier-Stokes results, with

a very coarse grid, have only a good qualitative agreement. Nevertheless, the study

demonstates that the numerical methodology presented here is capable of calculating

accurately the flowfield of a helicopter rotor including the effects of vortex interaction

under subcritical and supercritical flow conditions. m

The second problem considered is that of a lifting hovering rotor flowfield. In

contrast to the currently available potential flow methods that use wake modeling to

do these flowfield calculations, the Navier-Stokes method presented here uses no ad hoc I
inputs to describe the wake. The wake and its influence are captured as a part of the

overall flow field solution. The method is very fast and robust and is applicable to

arbitrary blade planforms and geometries with out any modifications. The calculations
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I
I performed in this report for subcritical and supercritical flow conditions show exceLlent

i agreement with the experimental data.

I

I
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I

I

I
I
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Fig. 1 Schematic of the complex flowfield of a helicopter rotor in forward Rlight.
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Fig. 3 Instantaneous surface pressure distributions at the reference blade section for
advancing rotor. Mtip = 0.6, p = 0.2, Re = 2.3x1O6 , rB = 0.893.
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Fig. 4 Instantaneous surface pressure distributions at the reference blade section for
advancing rotor. Mtip = 0.8, #u = 0.2, Re = 2.89x10 6 , rB = 0.893.
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Fig. 5 Instantaneous surface pressure distributions at the reference blade section for
retreating-blade-Euler solution. M'ip = 0.8, j = 0.2, rB = 0.893.

34



I

7NAVIER-STOKES CALCULATIONS

EULER CALCULATIONS

EXPERIMENT (CARADONNA et al.)

-2 =25.3' =50.63*I -.8

' I-.4 0

Cp 0

* .4

.8

1 (a) I(b)

-1.29 129.38

-. 88

I -.4

Cp 0

* .4-

.8
. (c) (d)

1.21

-1.2" 160.31o 171.56

-.8 0 0

0-

* -.4

Cp 0-

* .4

.8
1I (0l (f)

-.2 0 .2 .4 .6 .8 1.0 -.2 0 .2 .4 .6 .8 1.0
x x

Fig. 6 Instantaneous surface pressure distributions at the reference blade section for
advancing rotor. Mtip = 0.763, IL = 0.197, Re = 2.75x106 , rB = 0.946.
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Fig. 9 Comparison of instantaneous surface pressures during subsonic parallel blade-

vortex interaction. The solid line, the solid circle, and the symbol + refer to the vortex

side of the blade. Mtip = 0.6, jA = 0.2, Re = 2.1x106 , F 0.133, z = 0.0, z. = -0.4,

rB = 0.893.
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Fig. 10 Instantaneous surface pressures during transonic parallel blade-vortex interaction
-the Euler results. The solid line and the solid circle refer to the vortex side of the blade.

Mtip = 0.8, ;1 = 0.2, r = 0.177, z, = 0.0, zo = -0.4, rB = 0.893.
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Fig. 11 Instantaneous surface pressures during parallel blade-vortex interaction - the
Navier-Stokes results. The solid line and the solid circle refer to the vortex side of the
blade. Mti, = 0.8, jL = 0.2, Re = 2.89x10 6 , 1 = 0.177, Zo = 0.0, zo = -0.4, rB = 0.893.
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Fig. 12 Instantaneous surface pressures during oblique blade-vortex interaction -the

Euler results. The solid line and the solid circle refer to the vortex side of the blade.
Mtp= 0.763, js = 0.197, Re = 2.75x10', r=0.179, z. = -2.13, z, = -0.25, rB = 0.946. I
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Fig. 13 Instantaneous surface pressures during oblique blade-vortex interaction - the
Navier-Stokes results. The solid line and the solid circle refer to the vortex side of the
blade. Mtip = 0.763, IL = 0.197, Re = 2.75x10 6 , 1' = 0.179, zo = -2.13, zo = -0.25,
rB = 0.946.
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Fig. 14 Comparison of surface pressures for a lifting hovering rotor. Mtip 0.44,
at = 80, Re = 1.92xi06 and rB = 0.5.
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Fig. 15 Comparison of surface pressures for a lifting hovering rotor. Mti, = 0.44,
[it = 80, Re = 1.92x10 s and rB = 0.68.
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Fig. 16 Comparison of surface pressures for a lifting hovering rotor. Mtip =0.44,
at = 80 , Re = 1.92x106 and rB = 0.80.
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at= 80, Re = 3.83x10 6 and VB = 0.5.
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Fig. 20 Comparison of surface pressures for a lifting hovering rotor. Mti1 --- 0.877,
Gt = 80, Re = 3.83x10 e and rB = 0.68.
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Fig. 21 Comparison of surface pressures for a lifting hovering rotor. M, ip =0.877,
i at = 80, Re = 3.83x106 and rB = 0.80.
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Fig. 22 Comparison of surface pressures for a lifting hovering rotor. Mti = 0.877,
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Fig. 23 Comparison of surface pressures for a lifting hovering rotor. Mtip -0.794,

at = 120, Re = 3.53xi06 and rB = 0.5.
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Fig. 24 Comparison of surface pressures for a lifting hovering rotor. Mti = 0.794,
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IFig. 25 Comparison Of surface pressures for a lifting hovering rotor. Mt= 0.794,
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Fig. 26 Comparison of surface pressures for a lifting hovering rotor. Mtip = 0.794,
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